Power

Power
Tujuan pembuatan blog "Gogeneration" ini adalah sebagai sarana untuk berbagi ilmu pengetahuan dan mencerdaskan anak bangsa, dengan mengumpulkan tutorial dan artikel yang terserak di dunia maya maupun di literature-literature yang ada. Semoga dengan hadirnya blog "Gogeneration" ini dapat membawa manfaat bagi kita semua. dan saya ingin sharing tentang power plant dan substation khususnya di electrical, mechanical , automation, scada. walaupun sudah lebih dari sepuluh tahun menggeluti dunia itu tapi masih banyak hal yang harus dipelajari. dengan blog ini saya berharap bisa saling sharing, Blog ini didedikasikan kepada siapa pun yang mencintai ilmu pengetahuan
Powered By Blogger

Jumat, 25 Maret 2011

Pengaruh Udara Pada korona dan Tegangan Kritis Korona


Pengaruh Udara Pada korona dan Tegangan Kritis Korona

Seperti telah dijelaskan di artikel sebelumnya di sini, bahwa proses ionisasi yang terus-menerus dan berkelanjutan akan membentuk banjiran elektron. Maka pembentukan banjiran elektron ini tergantung pada kecepatan mula dari elektron dan percepatannya selama ia bergerak disepanjang jarak bebas antara dua tubrukkan. Ada gradient permukaan yang terbentuk dimana korona ini akan terjadi. Tegangan yang dimiliki pada gradient ini dinamakan “permukaan tegangan korona” atau secara tepat juga dinamakan permulaan tegangan korona mulai kelihatan.

Nilai dari tegangan ini tergantung pada:
• Keadaan atmosfer disekitarnya.
• Keadaan dari permukaan kawat.
• Bentuk susunan kawat.

Jadi tegangan kritis pada udara dan pada waktu terjadinya kegagalan sesuai dengan persamaan berikut:


Pada waktu terjadinya breakdown diudara Ed = 30 kV/cm atau 3000 kV/m.

Jadi tegangan kritis adalah sebesar:


D dan r didalam netral.

Bila dijadikan R.M.S maka:


Dan bila dirubah menjadi log 10, maka:


Didalam prakteknya, masih ada koreksi yang disebabkan oleh keadaan permukaan kawat yang tidak rata, karena itu harga diatas masih harus dikalikan dengan factor mo yang besarnya seperti dibawah ini:
• mo = 1,0 untuk kawat yang licin.
• mo = 0,98 s/d 0,93 untuk kawat kasar yang sudah lama dipasang.
• mo = 0,87 s/d 0,83 untuk kawat stranded terdiri dari 7 kawat halus.
• mo = 0,85 s/d 0,80 untuk kawat stranded yang terdiri dari 19, 37, 61, kawat halus.

Sehingga persamaan tegangan kritis menjadi:


Nilai ini berlaku pada cuaca cerah, sedangkan pada cuaca buruk (seperti mendung, hujan) naka harga tegangan harus dikalikan dengan factor koreksi untuk menyesuaikan dengan kenyataan. Adapun factor koreksinya adalah 0,8.

Jadi dalam hal ini, pada keadaan cuaca buruk:

Ed (RMS) = 0,8.Ed(RMS)t

Ed (RMS)t = Ed pada cuaca cerah.

Tegangan Kritis Bilamana Korona Mulai Kelihatan

Bilamana tegangan mencapai tegangan kritis maka korona ini belum kelihatan, sebab untuk menjadi kelihatan, maka muatan yang terdapat diudara haruslah menerima suatu energi tertentu, sebelum udara ini meneruskan ionisasinya yang disebabkan oleh adanya tubrukan elektron dengan atom yang lain.

Menurut “PEEK”, tegangan kritis ini haruslah mempunyai nilai sehingga melebihi harga tegangan breakdown dari udara sekelilingnya hingga jarak sebesar 0,03.d.r (meter) dari konduktor. Bilamana hal ini terjadi, maka korona akan mulai kelihatan. Oleh karena itu korona mulai kelihatan bilamana breakdown ini terjadi sampai pada suatu jarak (r + 0,03.d.r) dari titik tengah konduktor (bukan lagi berjarak = r), hingga tegangan kritis ini akan naik, sebab potensial gradient bertambah dari Ed menjadi Ev. Tetapi harga Ev tidak tetap karena ia bergantung dari besar jari-jari konduktor, sehingga:


dapat juga dituliskan; 


Jadi tegangan kritis “korona kelihatan”, menjadi:


Nilai dari mv adalah tergantung pada keadaan konduktor, yaitu:
• mv = 1,00 untuk kawat yang licin.
• mv = 0,93 s/d 1,00 untuk kawaqt biasa.
• mv = 0,72 untuk korona pada sepanjang kawat.
• mv = 0,82 untuk korona yang tetap pada sepanjang kawat.

Dari persamaan itu terlihat bahwa tegangan kritis ini (tegangan kritis bilamana korona mulai kelihatan) dari kawat transmisi nilainya dapat dinaikkan dengan cara:
• Menaikkan jarak kedua kawat (D)
• Memperbesar diameter kawat (r)

Dari kedua alternatif diatas, lebih baik dipilih memperbesar diameter (r), karena dengan menaikkan nilai r, maka biaya untuk pembuatan tiang listrik dapat ditekan rendah dan juga reaktansi dari sistem transmisi dapat dibuat rendah.

Oleh karena itu, supaya r besar maka dapat dipakai kawat yang stranded atau bundle conductor. Didalam prakteknya penggunaan bundle conductor mungkin tidak menguntungkan pada sistem dengan tegangan lebih rendah dari 220 kV. Tetapi dengan sistem Tegangan Ekstra Tinggi, pengguna bundle conductor lebih menguntungkan.

Pada sistem tiga fasa, gradient tegangan dari setiap kawat tergantung dari susunan kawat tersebut. Sebagai contoh untuk menghitung gradient tegangan dari system tiga fasa adalah seperti berikut: misal setiap fasa terdiri dari satu kawat dan kawat disusun secara mendatar.



Gambar 1. Gradient tegangan pada susunan kawat secara mendatar

Nilai maksimum dari potensial gradient:


• Untuk korona yang kelihatan Vv:


Dan dikalikan dengan:  

• Sehingga nilainya menjadi:


gv = 3000 kV/m

• jadi tegangan kritis korona kelihatan adalah:

 terhadap netral/m

Bilamana diambil h = 0,05 D; 2h = jarak antara konduktor dengan bayangannya.

 

• Jadi tegangan kritis korona kelihatan adalah:

 



kV peak / m

• Nilai RMS dari tegangan kritis ini adalah:

kV (RMS) terhadap netral / m

Bilamana kawat terdiri dari kawat yang dibundel dan disusun secara horizontal.



Gambar 2. kawat susunan horizontal.

Nilai maksimum dari potensial gradient adalah:


Jika h = 0,5 D, maka:


Tidak ada komentar:

Posting Komentar