Power

Power
Tujuan pembuatan blog "Gogeneration" ini adalah sebagai sarana untuk berbagi ilmu pengetahuan dan mencerdaskan anak bangsa, dengan mengumpulkan tutorial dan artikel yang terserak di dunia maya maupun di literature-literature yang ada. Semoga dengan hadirnya blog "Gogeneration" ini dapat membawa manfaat bagi kita semua. dan saya ingin sharing tentang power plant dan substation khususnya di electrical, mechanical , automation, scada. walaupun sudah lebih dari sepuluh tahun menggeluti dunia itu tapi masih banyak hal yang harus dipelajari. dengan blog ini saya berharap bisa saling sharing, Blog ini didedikasikan kepada siapa pun yang mencintai ilmu pengetahuan
Powered By Blogger

Kamis, 12 April 2012

Bahaya Gelombang Harmonik

Beban listrik di industri dibagi dalam 4 kategori:
1. Beban non linear: Sumber harmonisa tinggi
2. Trafo Distribusi: Reaktansi XL
3. Power Capacitor: Reaktansi XC
4. Beban-beban lain yang bukan sumber harmonisa
Beban listrik yang menimbulkan Harmonisa tinggi:
a. Motor DC
b. Perubahan kecepatan motor (Frequensi Converter)
c.UPS (Uninteruptible Power Supply)
d. Mesin Las (Arc Furnace)
e Trafo (Induction Furnace)
f Discharge Lamp
Dampak buruk yang ditimbulkan oleh Gelombang Harmonik:
a. Kesalahan operasi pada alat-alat pengatur (regulation device), timbul karena pergeseran phasa dari wave form tegangan disamping nilai puncak (peak value) dari wave form tegangan juga turut meningkat tajam.
b. Bertambahnya kehilangan energi baik pada tembaga (kabel-kabel dan kumparan) maupun pada besi (pada inti dari trafo distribusi).
c. Overheating pada motor-motor listrik dan pada capacitor.
d. Dampak buruk pada audio frekuensi.
e. Bertambahnya bunyi (sound level) pada motor-motor dan peralatan listrik lainnya.
f. Tripping pada Circuit Breaker
Guna mengkonpensasi daya reaktif pada beban-beban induktif digunakan Power Capacitor yang dihubungkan paralel dengan beban pada panel induk, dengan demikian power factor beban keseluruhan akan dapat diperbaiki seperti yang disyaratkan oleh PLN.
Namun menghubungkan langsung power capacitor pada jaringan distribusi berbeban non linear yang menghasilkan harmonisa tinggi akan sangat berbahaya karena kemungkinan terjadinya paralel resonansi antara capacitor dengan beban induktif tertentu bahkan dengan trafo distribusi,
dan apabila frekuensi resonansi berada sangat dekat dengan frekuensi harmonisa ke-5 dan ke-7 maka tegangan harmonisa tinggi yang sangat kuat akan muncul pada busbar panel induk dan mengakibatkan arus lebih (over current) pada capacitor, trafo distribusi dan beban-beban lain.

Untuk mengatasi dampak pemasangan PF Correction Capacitor terhadap meningkatnya harmonisa tinggi pada jaringan berbeban non linear maka harus dipasang Detuned Reactor yang dihubungkan seri dengan power capacitor sehingga arus harmonisa dapat teredam.

Kapan diperlukan Detuned Reactor?
Jika total daya peralatan yang menghasilkan gelombang harmonik lebih dari 20% dibanding dengan total daya trafo maka diperlukan Detuned Reactor yang dihubungkan seri dengan power capacitor.




Tap Changer (Perubah Tap) Pada Transformator

Tap changer adalah alat perubah perbandingan transformasi untuk mendapatkan tegangan operasi sekunder yang lebih baik (diinginkan) dari tegangan jaringan / primer yang berubah-ubah.

Untuk memenuhi kualitas tegangan pelayanan sesuai kebutuhan konsumen (PLN Distribusi), tegangan keluaran (sekunder) transformator harus dapat dirubah sesuai keinginan. Untuk memenuhi hal tersebut, maka pada salah satu atau pada kedua sisi belitan transformator dibuat tap (penyadap) untuk merubah perbandingan transformasi (rasio) trafo.

Ada dua cara kerja tap changer:
1. Mengubah tap dalam keadaan trafo tanpa beban. Tap changer yang hanya bisa beroperasi untuk memindahkan tap transformator dalam keadaan transformator tidak berbeban, disebut “Off Load Tap Changer” dan hanya dapat dioperasikan manual (Gambar 1).

2. Mengubah tap dalam keadaan trafo berbeban. Tap changer yang dapat beroperasi untuk memindahkan tap transformator, dalam keadaan transformator berbeban, disebut “On Load Tap Changer (OLTC)” dan dapat dioperasikan secara manual atau otomatis (Gambar 2).

Transformator yang terpasang di gardu induk pada umumnya menggunakan tap changer yang dapat dioperasikan dalam keadaan trafo berbeban dan dipasang di sisi primer. Sedangkan transformator penaik tegangan di pembangkit atau pada trafo kapasitas kecil, umumnya menggunakan tap changer yang dioperasikan hanya pada saat trafo tenaga tanpa beban.

OLTC terdiri dari :
1. Selector Switch
2. diverter switch
3. transisi resistor

Untuk mengisolasi dari bodi trafo (tanah) dan meredam panas pada saat proses perpindahan tap, maka OLTC direndam di dalam minyak isolasi yang biasanya terpisah dengan minyak isolasi utama trafo (ada beberapa trafo yang compartemennya menjadi satu dengan main tank).

Karena pada proses perpindahan hubungan tap di dalam minyak terjadi fenomena elektris, mekanis, kimia dan panas, maka minyak isolasi OLTC kualitasnya akan cepat menurun. tergantung dari jumlah kerjanya dan adanya kelainan di dalam OLTC.

Rabu, 11 April 2012

Pengaruh Harmonik pada Transformator Distribusi


Prinsip Dasar

Harmonik adalah gangguan yang terjadi pada sistem distribusi tenaga listrik akibat terjadinya distorsi gelombang arus dan tegangan. Pada dasarnya, harmonik adalah gejala pembentukan gelombang-gelombang dengan frekuensi berbeda yang merupakan perkalian bilangan bulat dengan frekuensi dasarnya. Hal ini disebut frekuensi harmonik yang timbul pada bentuk gelombang aslinya sedangkan bilangan bulat pengali frekuensi dasar disebut angka urutan harmonik. Misalnya, frekuensi dasar suatu sistem tenaga listrik adalah 50 Hz, maka harmonik keduanya adalah gelombang dengan frekuensi sebesar 100 Hz, harmonik ketiga adalah gelombang dengan frekuensi sebesar 150 Hz dan seterusnya. Gelombang-gelombang ini kemudian menumpang pada gelombang murni/aslinya sehingga terbentuk gelombang cacad yang merupakan jumlah antara gelombang murni sesaat dengan gelombang hormoniknya.

Sumber Harmonik pada Sistem Distribusi

Dalam sistem tenaga listrik dikenal dua jenis beban yaitu beban linier dan beban non linier. Beban linier adalah beban yang memberikan bentuk gelombang keluaran yang linier artinya arus yang mengalir sebanding dengan impedensi dan perubahan tegangan. Sedangkan beban non linier adalah bentuk gelombang keluarannya tidak sebanding dengan tegangan dalam setiap setengan siklus sehingga bentuk gelombang arus maupun tegangan keluarannya tidak sama dengan gelombang masukannya (mengalami distorsi). Beban non linier yang umumnya merupakan peralatan elektronik yang didalamnya banyak terdapat komponen semi konduktor, dalam proses kerjanya berlaku sebagai saklar yang bekerja pada setiap siklus gelombang dari sumber tegangan. Proses kerja ini akan menghasilkan gangguan atau distorsi gelombang arus yang tidak sinusoidal. Bentuk gelombang ini tidak menentu dan dapat berubah menurut pengaturan pada parameter komponen semi konduktor dalam peralatan elektronik. Perubahan bentuk gelombang ini tidak terkait dengan sumber tegangannya.
Beberapa peralatan yang dapat menyebabkan timbulnya harmonik antara lain komputer, printer, lampu fluorescent yang menggunakan elektronik ballast, kendali kecepatan motor, motor induksi, batere charger, proses eletroplating, dll. Peralatan ini dirancang untuk menggunakan arus listrik secara hemat dan efisien karena arus listrik hanya dapat melalui komponen semi konduktornya selama periode pengaturan yang telah ditentukan. Namun disisi lain hal ini akan menyebabkan gelombang mengalami gangguan gelombang arus dan tegangan yang pada akhirnya akan kembali ke bagian lain sistem tenaga listrik. Penomena ini akan menimbulkan gangguan beban tidak linier satu phase. Hal di atas banyak terjadi pada distribusi yang memasok pada areal perkantoran/komersial. Sedangkan pada areal perindustrian gangguan yang terjadi adalah beban non linier tiga phase yang disebabkan oleh motor listrik, kontrol keepatan motor, batere charger, electroplating, dapur busur listrik, dll.

Pengaruh Harmonik pada Komponen Sistem Distribusi

Setiap komponensistem distribusi dapat dipengaruhi oleh harmonik walaupun dengan akibat yang berbeda. Namun demikian komponen tersebut akan mengalami penurunan kinerja dan bahkan akan mengalami kerusakan. Salah satu dampak yang umum dari gangguan harmonik adalah panas lebih pada kawat netral dan transformator sebagai akibat timbulnya harmonik ketiga yang dibangkitkan oleh peralatan listrik satu phase. Pada keadaan normal, arus beban setiap phase dari beban linier yang seimbang pada frekuensi dasarnya akan saling mengurangi sehingga arus netralnya menjadi nol. Sebaliknya beban tidak linier satu phase akan menimbulkan harmonik kelipatan tiga ganjil yang disebut triplen harmonik (harmonik ke-3, ke-9, ke-15 dan seterusnya) yang sering disebut zero sequence harmonik (lihat Tabel 1). Harmonik ini tidak menghilangkan arus netral tetapi dapat menghasilkan arus netral yang lebih tinggi dari arus phase.
Tabel 1. Polaritas dari Komponen Harmonik 
Harmonik123456789
Frequensi (Hz)50100150200250300350400450
Uruan+-0+-0+-0

Harmonik pertama urutan polaritasnya adalah positif, harmonik kedua urutan polaritasnya adalah negatif dan harmonik ketiga urutan polaritasnya adalah nol, harmonik keempat adalah positif (berulang berurutan sampai seterusnya).
Tabel 2. Akibat dari Polaritas dari Komponen Harmonik 
UrutanPengaruh pada MotorPengaruh pada sistem distribusi
Positif Menimbulkan medan magnet
putar arah majau (forward)
w Panas
Negatif Menimbulkan medan magnet
putar arah mundur (reverse)
w Panas
w Arah putaran motor berubah
Nol Tidak ada w Panas
w Menimbulkan/menambah arus
pada kawat netral

Akibat yang dapat ditimbulkan oleh urutan polaritas komponen harmonik (lihat Tabel 2) antara lain tingginya arus netral pada sistem 3 phase 4 kawat (sisi sekunder transformator) karena arus urutan nol (zero sequence) dan arus ini akan terinduksi ke sisi primer transformator dan akan berputar pada sisi primer transformator yang biasanya memiliki belitan delta (D). Hal ini akibat pada kawat netral tidak memiliki peralatan pemutus arus untuk proteksi tegangan atau arus lebih. Pengaruh harmonik pada transformator sering tanpa disadari dan diantisipasi keberadaannya sampai terjadi gangguan yang penyebabnya tidak jelas. Hal ini dapat juga terjadi bila perubahan konfigurasi atau jenis beban yang dipasok. Transformator dan peralatan induksi lainnya, selalu terpengaruh oleh harmonik karena trafo itu sendiri dirancang sesuai dengan frekuensi kerjanya. selain itu transformator juga merupakan media utama antara pembangkit dengan beban. Frekuensi harmonik yang lebih tinggi dari frekuensi kerjanya akan mengakibatkan penurunan efisiensi atau terjadi kerugian daya. Selain itu, ada beberapa akibat yang dapat ditimbulkan oleh adanya harmonik dalam sistem tenaga listrik, antara lain:
  1. Timbulnya getaran mekanis pada panel listrik yang merupakan getaran resonansi mekanis akibat harmonik arus frekuensi tinggi,
  2. Harmonik dapat menimbulkan tambahan torsi pada kWh meter jenis elektromekanis yang menggunakan piringan induksi berputar. Sebagai akibatnya, puratan piringan akan lebih cepat atau terjadi kesalahan ukur kWh meter karena piringan induksi tersebut dirancang hanya untuk beroperasi pada frekuensi dasar,
  3. Interferensi frekunsi pada sistem telekomunikasi karena biasanya kabel untuk keperluan telekomunikasi ditempatkan berdekatan dengan kawat netral. Triplen harmonik pada kawat netral dapat memberikan induksi harmonik yang mengganggu sistem telekomunikasi,
  4. Pemutusan beban. Pemutus beban dapat bekerja dibawah arus pengenalnya atau mungkin tidak bekerja pada arus pengenal. Pemutus beban yang dapat terhindar dari gangguan harmonik pada umumnya adalah pemutus beban yang mempunyai respon terhadap arus rms sebenarnya (true-rms current) atau kenaikan temperatur karena arus lebih.

Identifikasi Harmonik

Untuk mengidentifikasi kehadiran harmonik pada sistem distribusi, dapat diketahui melalui langkah-langkah sebagai berikut:
    Identifikasi Jenis Beban Jenis beban yang dipasok, misalnya peralatan apa yang dipakai oleh konsumen. Bila banyaknya peralatan yang mempunyai komponen utama terbuat dari bahan semikonduktor seperti komputer dan alat bantunya, pengatur kecepatan motor, atau peralatan lain yang menggunakan arus searah maka dapat diperkirakan masalah harmonik ada diintalasi konsumen tersebut.Pemeriksaan Transformator Untuk transformator yang memasok beban non linier apakah ada kenaikan temperaturnya tidak normal. Arus sekunder transformator baik phase maupun netral perlu dilihat. Bandingkan arus netralnya dengan arus phase pada keadaan beban tidak seimbang. Apabila arus netralnya lebih besar maka dapat diperkirakan adanya trilen harmonik dan kemungkinan turunnya kinerja transformator. Pemeriksaan Tegangan Netral Tanah Terjadinya arus lebih pada kawat netral (untuk sistem 3 phase dan 4 kawat) dapat diktahui dengan melihat tegangan netral-tanah pada keadaan berbeban. Apabila tegangan yang terukur lebih besar dari 2 Volt maka terdapat indikasi adanya masalah harmonik pada beban tersebut. Apabila indikasi-indikasi adanya harmonik telah diketahui maka perlu dilakukan langkah-langkah untuk mengatasi masalah gangguan harmonik antara lain dengan mengetahui harmonik untuk menentukan harmonik-harmonik yang dominan dan sumber utamanya.

Usaha-usaha Untuk Mengurangi Harmonik

Ada beberapa cara yang dapat dilakukan untuk mengurangi pengaruh harmonik pada sistem distribusi antara lain:
    Memperbesar Kawat Netral Setiap sistem distribusi biasanya memakai sistem 3 phase empat kawat, yaitu 3 kawat untuk ketiga phase dan 1 kawat lagi untuk netral. Apabila beban yang dipasok non linier sehingga pengaruh harmonik lebih dominan maka untuk mengatasi panas lebih pada kawat netral akibat pengaruh harmonik sebaiknya ukuran kawat netral diperbesar dari ukuran standarnya. Begitu juga pada panel-panel listrik disarankan kawat netral untuk sistem pentanahannya diperbesar dari ukuran standarnya.Menurunkan Kapasitas Transformator Salah satu cara yang dapat dilakukan untuk mengurangi pengaruh harmonik pada sistem distribusi adalah dengan mengurangi kapasitas suplai daya transformator (derating fransformator). Dalam menentukan besarnya pengurangan kapasitas transformator ada metode sederhana yang dapat dipergunakan yaitu dengan memakai persamaan sebagai berikut: KVA baru = THDF x KVA pengenal ..................persamaan (1) di mana THDF adalah Transformator Harmonic Derating Factor, THDF = [1,414 x (arus phase rms) / (arus puncak phase sesaat)] x 100% = [(1,414 x 1/3 x (Ir + Is + It)rms / 1/3 x (Ir + Is + It)puncak] x 100%

Usaha Penanganan Lebih Lanjut

Untuk instalasi konsumen yang memerlukan kualitas listrik yang lebih baik dan handal, untuk mengurangi pengaruh harmonik maka pada transformator distribusi atau panel kontrol utama perlu dipasang peralatan proteksi, yaitu antara lain filter harmonik (harmonic filter), reaktor blok (bloking reactor) atau bank kapasitor (capacitor bank).
Hasil Pengujian
Pengujian dilakukan terhadap 20 buah transformator distribusi milik PLN Cabang Bekasi yang mewakili beberapa jenis konsumen. Waktu pengujian dilakukan pada siang hari antara pukul 10.00 - 15.00 wib. Data hasil pengukuran variabel yang dapat diukur antara lain:
  • Besaran arus rms sebenarnya (true-rms current) dan arus puncak (peak-current);
  • Besaran rms dan puncak untuk arus, tegangan dan daya;
  • Besarnya harga THD rms, tegangan, arus dan daya harmonik pada setiap phase sampai pada harmonik ke-31;
  • Besarnya arus netral;
  • Beban puncak;
  • Beda phase;
  • Beban puncak;
  • Beda phase;
  • Power faktor;
  • Komponen DC pada setiap phase;
  • Crest factor; dan
  • K faktor.
Dari variable atau besaran listrik yang diperoleh dari pengukuran dapat diperoleh nilai THDF dan kapasitas baru transformator dengan menggunakan persamaan (1) di atas, maka dapat dihitung KVA baru. Data hasil pengukuran lapangan disajikan pada Tabel 3

TRANSFORMATOR DISTRIBUSI


URAIAN SYSTEM
Transformator yang biasa diistilahkan dengan transformer atau ‘trafo’ adalah suatu alat untuk “memindahkan” daya listrik arus bolak-balik ( alternating current ) dari suatu rangkaian ke rangkaian lainnya berdasarkan prinsip induksi elektromagnetik ( EMF Induction ) yang terjadi antara 2 induktor ( kumparan ) atau lebih.
Bagian-bagian terpenting dan mendasar dari sebuah trafo adalah :
● Kumparan primer (primary winding) yg dihubungkan dengan sumber listrik,
● Kumparan sekunder (secondary winding) yg dihubungkan dengan beban,
● Inti / teras / kernel (core) yang berfungsi menyalurkan GGL induksi antar kedua kumparan
Perhatikan sketsa berikut :
rangkaian-dasar-transformator.JPG
1. Prinsip teknis kerja trafo :
Dalam parktek, dikenal 3 sistem pendeteksian dan pengendalian, yaitu :
Apabila kumpatan primer dihubungkan dengan sumber tegangan dengan arus bolak balik (AC), maka arus I1 akan mengalir pada kumparan primer, dan menimbulkan flux magnet yang berubah - ubah sesuai frekuensi arus I1 pada kernel trafo, dan menimbulkan GGL induksi eρ pada kumparan primer. Besarnya GGL induksi eρ adalah :
eρ = - Nρ dø / dt volt ..….……….………………………………………. (1)
dengan : eρ = GGL Induksi primer
Nρ = Jumlah lilitan primer
dø = Jumlah GGM, dalam weber
dt = Perubahan waktu, dalam detik
Perubahan flux magnetik yang menginduksi GGL ep adalah flux bersama (mutual flux), sehingga GGL induksi muncul pada kumparen sekunder sebagai es yang besarnya adalah :
es = – Ns (dø / dt) volt …………………………………………… (2)
dengan Ns = jumlah lilitan kumparan sekunder dari (1) dan (2), perbandingan lilitan dapat didapat dari perbandingan lilitan sebagai berikut :
a = ep / es = Np / Ns ……………..………………………………….. (3)
dengan ‘a’ = rasio perbandingan lilitan (turn ratio) transformator
Karena rasio perbandingan tegangan berbanding lurus dengan rasio perbandingan lilitan, maka apabila a<1>1 maka fungsinya adalah untuk menaikkan tegangan (step up transformer).
Flux pada saat dinyatakan dengan f(t) = fm sin wt
dengan øm = nilai flux maksimum ( webwer), sehingga GGL pada kumparan primer adalah :
ep = – Np dø / dt
ep = – Np d øm sin ωt / dt
ep = – Np ω øm cos ωt
ep = – Np ω øm sin (ωt - Л/2)
GGL induksi primer maksimum adalah (ep)max = - Np ω øm, melalui persamaan :
ep = (Ep)max / √2
= Np ω øm / √2
= 2Л ø Np ω øm √2 / 2
= 3,14. 1.41 f Np øm
ep = 4,44 f Np øm ………………………………………..……………..………….. (4)
dengan cara yang sama diperoleh :
es = 4,44 f Nsøm ………………………………..……….………….…………….. (5)
Apabila transformer dianggap ideal, tanpa rugi-rugi daya, maka daya input Pi dianggap sama dengan daya output Po. Sehingga dari ( 3 ) didapat:
U1.I1 = U2.I2
a = Np/Ns = U1/U2 = I1/I2 .………………………………………………………. (6)
Persamaan (5) dan (6) inilah yang biasa digunakan sebagai pendekatan dalam praktek pengawasan di lapangan.
2. Jenis / tipe dan klasifikasi trafo:
(akan di jelaskan dimateri tersendiri)
PERALATAN UTAMA & FUNGSI
Sesuai dengan penjelasan diatas, maka sebuah transformator distribusi berfungsi untuk menurunkan tegangan transmisi menengah 20kV ke tegangan distribusi 220/380V sehingga dengan demikian, peralatan utamanya adalah unit trafo itu sendiri ( umumnya jenis 3 phase ).
1. Kumparan tersier :
Selain kedua kumparan ( primer dan sekunder ) ada beberapa trafo yang dilengkapi dengan kumparan ketiga atau kumparan tersier ( tertiary winding ).
Kumparan tersier diperlukan untuk memperoleh tegangan tersier atau untuk kebutuhan lain. Untuk kedua keperluan tersebut, kumparan tersier selalu dihubungkan delta.
Kumparan tersier sering dipergunakan juga untuk penyambungan peralatan bantu seperti kondensator synchrone, kapasitor shunt dan reactor shunt, namun demikian tidak semua trafo daya mempunyai kumparan tersier.
2. Media pendingin :
Khusus jenis trafo tenaga tipe basah, kumparan-kumparan dan intinya direndam dalam minyak-trafo, terutama trafo-trafo tenaga yang berkapasitas besar, karena minyak trafo mempunyai sifat sebagai media pemindah panas dan bersifat pula sebagai isolasi ( tegangan tembus tinggi ) sehingga berfungsi sebagai media pendingin dan isolasi. Untuk itu minyak trafo harus memenuhi persyaratan sbb. :
a. ketahanan isolasi harus tinggi ( >10kV/mm )
b. Berat jenis harus kecil, sehingga partikel-partikel inert di dalam minyak dapat mengendap dengan cepat.
c. Viskositas yang rendah agar lebih mudah bersirkulasi dan kemampuan pendinginan menjadi lebih baik.
d. Titik nyala yang tinggi, tidak mudah menguap yg dapat membahayakan
e. Tidak merusak bahan isolasi padat ( sifat kimia ‘y’ )
3. Bushing :
Merupakan penghubung antara kumparan trafo ke jaringan luar. Bushing adalah sebuah konduktor yang diselubungi oleh isolator, yang sekaligus berfungsi sebagai penyekat antara konduktor tersebut dengan tangki trafo.
4. Tangki dan konservator (khusus pada trafo tipe basah) :
Pada umumnya bagian-bagian dari trafo yang terendam minyak trafo yang ditempatkan di dalam tangki baja. Tangki trafo-trafo distribusi umumnya dilengkapi dengan sirip-sirip pendingin ( cooling fin ) yang berfungsi memperluas permukaan dinding tangki, sehingga penyaluran panas minyak pada saat konveksi menjadi semakin baik dan efektif untuk menampung pemuaian minyak trafo, tangki dilengkapi dengan konservator.
5. Tap changer ( perubah tap ) :
Tap Changer adalah perubah perbandingan transformator untuk mendapatkan tegangan operasi sekunder sesuai yang diinginkan dari tegangan jaringan / primer yang berubah-ubah. Tap changer dapat dioperasikan baik dalam keadaan berbeban ( on-load ) atau dalam keadaan tak berbeban ( off load ), tergantung jenisnya.
6. Breather ( alat pernapasan ) :
Karena pengaruh naik turunnya beban trafo maupun suhu udara luar, maka suhu minyakpun akan berubah-ubah mengikuti keadaan tersebut. Bila suhu minyak tinggi, minyak akan memuai dan mendesak udara di atas permukaan minyak keluar dari dalam tangki, sebaliknya bila suhu minyak turun dan volumenya menyusut maka udara luar akan masuk ke dalam tangki.
Proses di atas disebut “pernapasan trafo”. Hal tersebut menyebabkan permukaan minyak trafo akan selalu bersinggungan dengan udara luar yg menurunkan nilai tegangan tembus minyak trafo. Untuk mencegah hal tersebut maka pada ujung pipa penghubung udara luar dilengkapi tabung khusus yg berisi kristal yg bersifat hygroskopis.
7. Perlatan pengaman (safety devices):
Setiap unit trafo distribusi selalu dilengkapi dengan peralatan pengaman, yg mengamankan trafo khususnya fisis, elektris maupun kimiawi. Beberapa peralatan pengaman yg umum dikenal, antara lain :
a. Bucholz rele :
Rele ini berfungsi mendeteksi dan mengamankan trafo terhadap gangguan di dalam tangki yang menimbulkan gas. Gas dapat timbul diakibatkan oleh :
i. Hubung singkat antar lilitan pada/dalam phasa
ii. Hubung singkat antar phasa atau phasa ke tanah
iii.Busur api listrik antar laminasi atau karena kontak yang kurang baik.
b. Over pressure rele :
Rele ini berfungsi hampir sama seperti rele Bucholz, yakni mengamankan terhadap gangguan di dalam trafo. Bedanya rele ini hanya bekerja oleh kenaikan tekanan gas yang tiba-tiba dan langsung mentripkan CB pada sisi upstream-nya.
c. Differential rele :
Berfungsi mengamankan trafo dari gangguan di dalam trafo antara lain flash over antara kumparan dengan kumparan, kumparan dengan tangki atau belitan dengan belitan di dalam kumparan ataupun antar kumparan.
d. Thermal rele :
Berfungsi untuk mengamankan trafo dari kerusakan isolasi kumparan, akibat adanya panas berlebih yang ditimbulkan oleh arus lebih ( over current ). Parameter yang diukur oleh rele ini adalah kenaikan temperatur.
Saat ini keempat jenis rele tersebut diintegrasikan pada satu jenis rele yang dikenal dengan DGPT2. Notasi DGPT2 berarti :
- D = Differential rele
- G = Gas rele
- P = Pressure rele
- T2= Temperature ( thermal ) rele dengan 2 thermostat, masing masing digunakan untuk men-triger alarm dan yang lainnya untuk mengoperasikan kumparan shunt pada CB di sisi upstream, untuk memutuskan / men-trip pasokan daya ke trafo.
e. OCR ( Over Current Rele) :
Berfungsi mengamankan trafo arus yang melebihi nilai yang diperkenankan lewat pada trafo tersebut. Arus lebih dapat terjadi oleh karena beban lebih atau gangguan hubung singkat.
f. Rele tangki–tanah :
Berfungsi untuk mengamankan trafo bila terjadi hubung singkat antara bagian yang bertegangan dengan bagian yang tidak bertegangan pada trafo.
g. Restricted Earth Fault rele :
Berfungsi untuk mengamankan trafo bila terjadi gangguan hubung singkat 1 phasa ke tanah.
h. Indikator-indikator :
Untuk mengawasi kondisi trafo selama beroperasi, maka setiap unit trafo umumnya dilengkapi dengan indikator-indikator berikut :
i. Indikator suhu minyak
ii. Indikator permukaan minyak
iii.Indikator sistem pendingin
iv.Indikator kedudukan tap
dwg-power-trafo-5-mva-1250-kva.JPG
dgpt2-bucholz-rele.JPG
DIAGRAM SISTEM
trafo-dalam-sistem.JPG
Drawing 7 : Contoh penempatan unit trafo distribusi dalam sistem

KOMPONEN-KOMPONEN TRANSFORMATOR / TRANSFORMER / TRAFO

1. Inti Besi
Inti besi berfungsi untuk mempermudah jalan fluksi,magnetik yang ditimbulkan oleh arus listrik yang melalui kumparan. Dibuat dari lempengan-lempengan besi tipis yang berisolasi, untuk mengurangi panas (sebagai rugi-rugi besi) yang ditimbulkan oleh Eddy Current.

2. Kumparan Transformator
Kumparan transformator adalah beberapa lilitan kawat berisolasi yang membentuk suatu kumparan atau gulungan. Kumparan tersebut terdiri dari kumparan primer dan kumparan sekunder yang diisolasi baik terhadap inti besi maupun terhadap antar kumparan dengan isolasi padat seperti karton, pertinak dan lain-lain. Kumparan tersebut sebagai alat transformasi tegangan dan arus.

3. Minyak Transformator
Minyak transformator merupakan salah satu bahan isolasi cair yang dipergunakan sebagai isolasi dan pendingin pada transformator.
• Sebagai bagian dari bahan isolasi, minyak harus memiliki kemampuan untuk menahan tegangan tembus, sedangkan
• sebagai pendingin minyak transformator harus mampu meredam panas yang ditimbulkan,
sehingga dengan kedua kemampuan ini maka minyak diharapkan akan mampu melindungi transformator dari gangguan.

Minyak transformator mempunyai unsur atau senyawa hidrokarbon yang terkandung adalah senyawa hidrokarbon parafinik, senyawa hidrokarbon naftenik dan senyawa hidrokarbon aromatik. Selain ketiga senyawa tersebut, minyak transformator masih mengandung senyawa yang disebut zat aditif meskipun kandungannya sangat kecil .

4. Bushing
Hubungan antara kumparan transformator dengan jaringan luar melalui sebuah bushing yaitu sebuah konduktor yang diselubungi oleh isolator. Bushing sekaligus berfungsi sebagai penyekat/isolator antara konduktor tersebut dengan tangki transformator. Pada bushing dilengkapi fasilitas untuk pengujian kondisi bushing yang sering disebut center tap.

5. Tangki Konservator
Tangki Konservator berfungsi untuk menampung minyak cadangan dan uap/udara akibat pemanasan trafo karena arus beban. Diantara tangki dan trafo dipasangkan relai bucholzt yang akan meyerap gas produksi akibat kerusakan minyak . Untuk menjaga agar minyak tidak terkontaminasi dengan air, ujung masuk saluran udara melalui saluran pelepasan/venting dilengkapi media penyerap uap air pada udara, sering disebut dengan silica gel dan dia tidak keluar mencemari udara disekitarnya.

6. Peralatan Bantu Pendinginan Transformator
Pada inti besi dan kumparan – kumparan akan timbul panas akibat rugi-rugi tembaga. Maka panas tersebut mengakibatkan kenaikan suhu yang berlebihan, ini akan merusak isolasi, maka untuk mengurangi kenaikan suhu yang berlebihan tersebut transformator perlu dilengkapi dengan alat atau sistem pendingin untuk menyalurkan panas keluar transformator, media yang dipakai pada sistem pendingin dapat berupa: Udara/gas, Minyak dan Air.

Pada cara alamiah, pengaliran media sebagai akibat adanya perbedaan suhu media dan untuk mempercepat pendinginan dari media-media (minyak-udara/gas) dengan cara melengkapi transformator dengan sirip-sirip (radiator). Bila diinginkan penyaluran panas yang lebih cepat lagi, cara manual dapat dilengkapi dengan peralatan untuk mempercepat sirkulasi media pendingin dengan pompa pompa sirkulasi minyak, udara dan air, cara ini disebut pendingin paksa (Forced).

7. Tap Changer
Kualitas operasi tenaga listrik jika tegangan nominalnya sesuai ketentuan, tapi pada saat operasi dapat saja terjadi penurunan tegangan sehingga kualitasnya menurun, untuk itu perlu alat pengatur tegangan agar tegangan selau pada kondisi terbaik, konstan dan berkelanjutan.

Untuk itu trafo dirancang sedemikian rupa sehingga perubahan tegangan pada sisi masuk/input tidak mengakibatkan perubahan tegangan pada sisi keluar/output, dengan kata lain tegangan di sisi keluar/output-nya tetap. Alat ini disebut sebagai sadapan pengatur tegangan tanpa terjadi pemutusan beban, biasa disebut On Load Tap Changer (OLTC). Pada umumnya OLTC tersambung pada sisi primer dan jumlahnya tergantung pada perancangan dan perubahan sistem tegangan pada jaringan.

8. Alat pernapasan (Dehydrating Breather)
Sebagai tempat penampungan pemuaian minyak isolasi akibat panas yang timbul, maka minyak ditampung pada tangki yang sering disebut sebagai konservator. Pada konservator ini permukaan minyak diusahakan tidak boleh bersinggungan dengan udara, karena kelembaban udara yang mengandung uap air akan mengkontaminasi minyak walaupun proses pengkontaminasinya berlangsung cukup lama. Untuk mengatasi hal tersebut, udara yang masuk kedalam tangki konservator pada saat minyak menjadi dingin memerlukan suatu media penghisap kelembaban, yang digunakan biasanya adalah silica gel. Kebalikan jika trafo panas maka pada saat menyusut maka akan menghisap udara dari luar masuk kedalam tangki dan untuk menghindari terkontaminasi oleh kelembaban udara maka diperlukan suatu media penghisap kelembaban yang digunakan biasanya adalah silica gel, yang secara khusus dirancang untuk maksud tersebut diatas.

9. Indikator-indikator

a . Thermometer / Temperature Gauge, alat ini berfungsi untuk mengukur tingkat panas dari trafo, baik panasnya kumparan primer dan sekunder juga minyak trafonya. Thermometer ini bekerja atas dasar air raksa (mercuri/Hg) yang tersambung dengan tabung pemuaian dan tersambung dengan jarum indikator derajat panas.
Beberapa thermometer dikombinasikan dengan panas dari resistor (khusus yang tersambung dengan transformator arus, yang terpasang pada salah satu fasa fasa tengah) dengan demikian penunjukan yang diperoleh adalah relatif terhadap panas sebenarnya yang terjadi.

b. Permukaan minyak / Level Gauge, alat ini berfungsi untuk penunjukan tinggi permukaan minyak yang ada pada konservator. Ada beberapa jenis penunjukan, seperti penunjukan lansung yaitu dengan cara memasang gelas penduga pada salah satu sisi konservator sehingga akan mudah mengetahui level minyak. Sedangkan jenis lain jika konservator dirancang sedemikian rupa dengan melengkapi semacam balon dari bahan elastis dan diisi dengan udara biasa dan dilengkapi dengan alat pelindung seperti pada sistem pernapasan sehingga pemuaian dan penyusutan minyak-udara yang masuk kedalam balon dalam kondisi kering dan aman.

10. Peralatan Proteksi Internal
a . Relai Bucholzt, Penggunaan relai deteksi gas (Bucholtz) pada Transformator terendam minyak yaitu untuk mengamankan transformator yang didasarkan pada gangguan Transformator seperti : arcing, partial discharge dan over heating yang umumnya menghasilkan gas. Gas-gas tersebut dikumpulkan pada ruangan relai dan akan mengerjakan kontak-kontak alarm.

Relai deteksi gas juga terdiri dari suatu peralatan yang tanggap terhadap ketidaknormalan aliran minyak yang tinggi yang timbul pada waktu transformator terjadi gangguan serius. Peralatan ini akan menggerakkan kontak trip yang pada umumnya terhubung dengan rangkaian trip Pemutus Arus dari instalasi transformator tersebut.

Ada beberapa jenis relai bucholtz yang terpasang pada transformator, Relai sejenis tapi digunakan untuk mengamankan ruang On Load Tap Changer (OLTC) dengan prinsip kerja yang sama sering disebut dengan Relai Jansen. Terdapat beberapa jenis antara lain sama seperti relai buhcoltz tetapi tidak ada kontrol gas, jenis tekanan ada yang menggunakan membran/selaput timah yang lentur sehingga bila terjadi perubahan tekanan kerena gangguan akan bekerja, disini tidak ada alarm akan tetapi langsung trip dan dengan prinsip yang sama hanya menggunakan pengaman tekanan atau saklar tekanan.

b. Jansen membran, alat ini berfungsi untuk pengaman tekanan lebih (Explosive Membrane) / Bursting Plate. Relai ini bekerja karena tekanan lebih akibat gangguan didalam transformator, karena tekanan melebihi kemampuan membran/selaput yang terpasang, maka membran akan pecah dan minyak akan keluar dari dalam transformator yang disebabkan oleh tekanan minyak

c . Relai tekanan lebih (Sudden Pressure Relay), suatu flash over atau hubung singkat yang timbul pada suatu transformator terendam minyak, umumnya akan berkaitan dengan suatu tekanan lebih didalam tangki, karena gas yang dibentuk oleh dekomposisi dan evaporasi minyak. Dengan melengkapi sebuah relai pelepasan tekanan lebih pada trafo, maka tekanan lebih yang membahayakan tangki trafo dapat dibatasi besarnya. Apabila tekanan lebih ini tidak dapat dieliminasi dalam waktu beberapa millidetik, maka terjadi panas lebih pada cairan tangki dan trafo akan meledak. Peralatan pengaman harus cepat bekerja mengevakuasi tekanan tersebut.

d. Relai pengaman tangki, relai bekerja sebagai pengaman jika terjadi arus mengalir pada tangki, akibat gangguan fasa ke tangki atau dari instalasi bantu seperti motor kipas, sirkulasi dan motor-motor bantu yang lain, pemanas dll.
Arus ini sebagai pengganti relai diferensial sebab sistim relai pengaman tangki biasanya dipasang pada trafo yang tidak dilengkapi trafo arus disisi primer dan biasanya pada trafo dengan kapasitas kecil. Trafo dipasang diatas isolator sehingga tidak terhubung ke tanah kemudian dengan menggunakan kabel pentanahan yang dilewatkan melali trafo arus dengan tingkat isolasi dan ratio yang kecil kemudian tersambung pada relai
tangki tanah dengan ratio Trafo arus antara 300 s/d 500 dengan sisi sekunder hanya 1 Amp.

e. Neutral Grounding Resistance / NGR atau Resistance Pentanahan Trafo, adalah tahanan yang dipasang antara titik netral trafo dengan pentanahan, dimana berfungsi untuk memperkecil arus gangguan. Resistance dipasang pada titik neutral trafo yang dihubungkan Y ( bintang/wye ).

NGR biasanya dipasang pada titik netral trafo 70 kV atau 20 kV, sedangkan pada titik netral trafo 150 kV dan 500 kV digrounding langsung (solid)

Nilai NGR:
Tegangan 70 kV = 40 Ohm
Tegangan 20 kV = 12 Ohm,40 Ohm, 200 Ohm dan 500 Ohm

Jenis Neutral Grounding Resistance
Resistance Liquid (Air), yaitu bahan resistance-nya adalah air murni. Untuk memperoleh nilai Resistance yang diinginkan ditambahkan garam KOH .

Resistance Logam, yaitu bahannya terbuat dari logam nekelin dan dibuat dalam panel dengan nilai resistance yang sudah ditentukan.

11. Peralatan Tambahan untuk Pengaman Transformator

a. Pemadam kebakaran, (biasanya untuk transformator – transformator besar ), Sistem pemadam kebakaran yang modern pada transformator saat sekarang sudah sangat diperlukan. Fungsi yang penting untuk mencegah terbakarnya trafo atau memadamkan secepat mungkin trafo jika terjadi kebakaran.

Penyebab trafo terbakar adalah karena gangguan hubung singkat pada sisi sekunder sehingga pada trafo akan mengalir arus maksimumnya. Jika proses tersebut berlangsung cukup lama dan relai tidak beroperasi. Sementara itu, tidak beroperasinya relai juga sebagai akibat salah menyetel waktu pembukaan PMT, relai rusak, dan sumber DC yang tidak ada, serta kerusakan sistim pengawatan.

Sistem pemadam kebakaran yang modern yaitu dengan sistem mengurangi minyak secara otomatis sehingga terdapat ruang yang mana secara paksa gas pemisah oksigen diudara dimasukan kedalam ruang yang sudah tidak ada minyaknya sehingga tidak ada pembakaran minyak, dan kerusakan yang lebih parah dapat dihindarkan, walaupun kondisi trafo menjadi rusak.

Proses pembuangan minyak secara grafitasi atau dengan menggunakan motor pompa DC adalah suatu kondisi yang sangat berisiko, sebab hanya menggunakan katup otomatis yang dikendalikan oleh pemicu dari saklar akibat panasnya api dan menutupnya katup otomatis pada katup pipa minyak penghubung tanki (konservator) ke dalam trafo (sebelum relai bucholz), serta adanya gas pemisah oksigen (gas nitrogen yang bertekanan tinggi) diisikan melaui pipa yang disambung pada bagian bawah trafo kemudian akan menuju keruang yang tidak terisi minyak.

b. Thermometer pengukur langsung, Thermometer pengukur langsung banyak digunakan pada instalasi tegangan tinggi/Gardu Induk , seperti pada ruang kontrol, ruang relai, ruang PLC dll. Suhu ruangan dicatat secara periodik pada formulir yang telah disiapkan dan dievaluasi sebagai bahan laporan.

c. Thermometer pengukur tidak langsung, Termometer pengukur tidak langsung banyak digunakan pada instalasi tegangan tinggi/ transformator yang berfungsi untuk mengetahui perubahan suhu minyak maupun belitan transformator. Suhu minyak dan belitan trafo dicatat secara periodik/berkala, pada formulir yang telah disiapkan dan dievaluasi sebagai laporan.

12. Relai Proteksi Transformator dan Fungsinya

Jenis relai proteksi pada trafo tenaga adalah sebagai berikut:

a. Relai arus lebih (over current relay), berfungsi untuk mengamankan transformator terhadap gangguan hubung singkat antar fasa didalam maupun diluar daerah pengaman transformator. Juga diharapkan relai ini mempunyai sifat komplementer dengan relai beban lebih, relai ini berfungsi pula sebagai pengaman cadangan pada bagian instalasi lainnya.

b. Relai Diferensial, relai ini berfungsi untuk mengamankan transformator terhadap gangguan hubung singkat yang terjadi didalam daerah pengaman.

c. Relai gangguan tanah terbatas (Restricted Earth fault Relay ), relai ini berfungsi untuk mengamankan transformator terhadap tanah didalam daerah pengaman transformator, khususnya untuk gangguan didekat titik netral yang tidak dapat dirasakan oleh relai differensial.

d. Relai arus lebih berarah, Directional Over Current Relay atau yang lebih dikenal dengan Relai arus lebih yang mempunyai arah tertentu merupakan Relai Pengaman yang bekerja karena adanya besaran arus dan tegangan yang dapat membedakan arah arus gangguan. Relai ini mempunyai 2 buah parameter ukur yaitu tegangan dan arus yang masuk ke dalam relai untuk membedakan arah arus ke depan atau arah arus ke belakang, pada pentanahan titik netral trafo dengan menggunakan tahanan. Relai ini dipasang pada penyulang 20 KV.

Bekerjanya relai ini berdasarkan adanya sumber arus dari ZCT (Zero Current Transformer) dan sumber tegangan dari PT (Potential Transformers). Sumber tegangan PT umumnya menggunakan rangkaian Open-Delta, tetapi tidak menutup kemungkinan ada yang menggunakan koneksi langsung 3 Phasa. Relai ini terpasang pada jaringan tegangan tinggi, tegangan menengah, juga pada pengaman transformator tenaga, dan berfungsi untuk mengamankan peralatan listrik akibat adanya gangguan phasa-phasa maupun Phasa ke tanah. Untuk membedakan arah tersebut maka salah satu phasa dari arus harus dibandingakan dengan Tegangan pada phasa yang lain.

e. Relay connections, adalah sudut perbedaan antara arus dengan tegangan masukan relai pada power faktor satu. Relai maximum torque angle adalah perbedaan sudut antara arus dengan tegangan pada relai yang menghasilkan torsi maksimum.

f. Relai gangguan tanah, relai ini berfungsi untuk mengamankan transformator jika terjadi gangguan hubung tanah didalam dan diluar daerah pengaman transformator. Relai arah hubung tanah memerlukan operating signal dan polarising signal. Operating signal diperoleh dari arus residual melalui rangkaian trafo arus penghantar (Iop = 3Io) sedangkan polarising signal diperoleh dari tegangan residual. Tegangan residual dapat diperoleh dari rangkaian sekunder open delta trafo tegangan.

g. Relai tangki tanah, relai ini berfungsi untuk mengamankan transformator terhadap hubung singkat antara kumparan fasa dengan tangki transformator dan transformator yang titik netralnya ditanahkan. Relai bekerja sebagai pengaman jika terjadi arus mengalir dari tangki akibat gangguan fasa ke tangki atau dari instalasi Bantu seperti motor kipas, sirkulasi dan motor-motor bantu, pemanas dll.
Pengaman arus ini sebagai pengganti relai diferensial, sebab sistim relai pengaman tangki biasanya dipasang pada trafo yang tidak dilengkapi trafo arus disisi primer dan biasanya pada trafo dengan kapasitas kecil. Trafo dipasang diatas isolator sehingga tidak terhubung ke tanah kemudian dengan menggunakan kabel pentanahan yang dilewatkan melalui trafo arus dengan tingkat isolasi dan ratio yang kecil, kemudian tersambung pada relai tangki tanah dengan ratio Trafo Arus(CT) antara 300 s/d 500 dengan sisi sekunder hanya 1 Amp.

13. Announciator Sistem Instalasi Tegangan Tinggi

Announciator adalah indikator kejadian pada saat terjadi ketidaknormalan pada sistem instalasi tegangan tinggi, baik secara individu maupun secara bersama. Announciator terjadi bersamaan dengan relai yang bekerja akibat jika terjadi ketidaknormalan pada peralatan tersebut. Annunciator biasanya berbentuk petunjuk tulisan yang pada kondisi normal tidak ada penunjukan, bila terjadi ketidaknormalan maka lampu didalam indikator tersebut menyala sesuai dengan kondisi sistem pada saat tersebut. Kumpulan indikator-indikator tersebut biasanya disebut sebagai announciator.

Announciator yang terlengkap pada saat sekarang adalah pada instalasi gardu induk SF6, sebab pada system GIS banyak sekali kondisi yang perlu di pantau seperti tekanan gas, kelembaban gas SF6 disetiap kompartemen, posisi kontak PMT, PMS baik PMS line, PMS Rel maupun PMS tanah dll. Untuk itu pembahasan tentang annunciator akan diambil dari sistem annunciatornya gardu induk SF6. seperti. Annunciator pada bay penghantar (SUTT maupun SKTT), Transformator dan Koppel.